Accelerating Particles to High Energy

Mike Syphers

Fermi National Accelerator Laboratory

Accelerator Division

email: syphers@fnal.gov web: http://home.fnal.gov/~syphers/

Outline of Presentation

- How do we accelerate particles?
- How do we keep billions of particles all going around together?
- How do we use accelerators to do High Energy Physics experiments?
- Fermilab Accelerators and their Operation
- The Future

Why Do We Need Accelerators?

• Kids probably tell their parents that they *need* these:

TV's! (classic TV's; not LCD display or plasma TV, though...)

- Other 'needs' in everyday life might include
 - Medical applications: X-ray machines, PET scans, etc.
 - Industrial applications
 - e beam welding, semiconductor modification, etc.
- In fact, a study in 1994* showed there were about 10,000 accelerators world-wide at that time:
 - only about 112 were used for 'High Energy' Physics!
 - ~5000 biomedical, ~4900 industrial
 - (does not include TV's! ;-)

^{*}Scharf & Chomicki, Physica Medica XII(4), 1996.

So, why do we need Accelerators?

- That is, why high energy particle accelerators, like at Fermilab?
- How do we "see" things?

- We need to send source particles toward target particles and then detect the outcome.
- "High energy" particles can have their energy converted into mass $(E = mc^2)$, and so new particle states can be created and observed.
- In addition, accelerators provide the ability to control the particles (steer, focus, increase/decrease intensity, for instance) in order to conduct experiments efficiently and in a controlled fashion.

How to Accelerate Particles

Acceleration

Dictionary Definition

noun

increase in the rate or speed of something: the acceleration of the industrialization process

- Physics: the rate of change of velocity per unit of time.
- a vehicle's capacity to gain speed within a short time : a Formula One car is superior to an Indy car in its acceleration.
- Newton's Second Law (one version):

$$a=F/m$$
 = Force delivered divided by mass of the object

Early Particle Accelerator

- Force -- due to gravity (weight) F = mg
- Energy gained = Force applied times distance traveled = $mg \cdot h$
- If started from rest, kinetic energy is gained,

$$\Delta E = \frac{1}{2}mv^2$$

From the tower, ...

 $v = \sqrt{2gh} = \sqrt{2(32)(183)}$ ft/sec ≈ 100 ft/sec ≈ 70 mi/hr

"Particle Acceleration"

- Sub-atomic particles are lightweights! A little force gets them going very fast!
- But, gravity isn't strong enough for our purposes
 - electrons, protons, etc. are electrically charged particles, and influences of electric and magnetic fields are much, much stronger than gravity
 - we want to get them moving near the speed of light
- So, set up electric fields (force) to accelerate them...

demo...

How to Accelerate Charged Particles

As the electron accelerates from the right hand plate to the left, the change in *energy* is the work done (force times distance),

$$\Delta E = F \times d = qV$$

The charge on an electron is $q = -e = -1.6 \times 10^{-19}$ Coul (on a proton, $+1.6 \times 10^{-19}$ Coul = +e)

So, we say that an electron/proton accelerated through 1 volt gains an amount of energy $\Delta E = 1 \text{ eV}$ (1 electron volt) (= 1.6 x 10⁻¹⁹ J) In example above, the electron would gain energy of amount 9 eV.

How fast is this electron moving?

If started from rest, $\Delta E = \frac{1}{2} m v^2$, and so $v = \sqrt{2\Delta E/m}$

$$= \sqrt{2 \times 9(1.6 \times 10^{-19} J)/(9 \times 10^{-31} kg)} = 1.8 \times 10^6 \text{ m/s!}$$

This is 4 million miles/hr! = 0.6% the speed of light (0.006c)

(c = 186,000 miles/sec = 300,000 km/sec)

Note: if looked at a proton instead, its mass is 1836 times that of the electron. Thus, its speed would be *only* 0.00014c.

(= 90,000 mi/hr!)

Q: How much voltage can we deliver?

Let's look at a TV set...

Your TV Set

• The "classic" television is a Cathode Ray Tube

phosphorescent screen which lights up when struck by electrons

evacuated glass container (*tube*)

[CRT]

OK, so it's a *little* more than that... but not much! *Really*!

Note: voltages encountered are a few tens of thousands of volts, therefore particle energies of about 10,000 eV!

So, how fast are we moving now?

• An electron in a typical TV set, with 10 keV kinetic energy, say, would thus be moving about

 $(10,000 \text{ eV} / 9 \text{ eV})^{1/2} = 30 \text{ times faster, --> } 20\% c.$

- Does this mean a 250 keV electron would be moving *at* the speed of light? Can we go faster?
 - No! "Relativistic effects" kick in...
 - Einstein, in 1905, showed that we had to modify our definitions of momentum and energy when near light speed
 - His Theory of Special Relativity (near the speed of light) plays a big role in high energy particle acceleration

Speed, Momentum vs. Energy

Electron: 0 MeV

Proton: 1000 2000 3000 MeV

$$gamma = \frac{1}{\sqrt{1 - (v/c)^2}}$$

rest energy, mc^2 :

0.5 MeV 938 MeV

So, Back to High Voltage!

- How to get high voltage? How high can we go?
- String a bunch of batteries in series!
 - Not very practical...

- High voltage Generators
 - Ex: van de Graaf, Cockcroft and Walton
- The van de Graaf Generator:
 - probably familiar ...
 - static electricity
 (as shown -- 75,000 V!)

So, Back to High Voltage!

- How to get high voltage? How high can we go?
- String a bunch of batteries in series!
 - Not very practical...

- High voltage Generators
 - Ex: van de Graaf, Cockcroft and Walton
- The *van de Graaf* Generator:
 - probably familiar ...
 - static electricity
 (as shown -- 75,000 V!)

High Voltage

- van de Graaf's are used for particle accelerators (though, with a different configuration) and provide voltages up to $\sim 10,000,000 \text{ V} = 10 \text{ MV}$.
- Fermilab has a related device, called a Pelletron, which works on the same principle; produces electron beams with energies of about 4 MeV.
- Another device was developed in early 1930's by *Cockcroft and Walton*, and is named after them:

Converts AC voltage V to DC voltage n x V

Is that Cockcroft, or Walton??

Let's Re-use the E-field!

- The Cockcroft-Walton design can produce voltages up to a few MV, and the van de Graaf up to about 10 MV; at these voltages, materials begin to experience "high voltage break-down"
 - Takes only a few MV to generate lightning
- So, to continue to higher particle energies, would like to re-use the electric fields we generate:

BUT! If the voltage is DC, then though particle is accelerated when in between the plates, it will be decelerated while outside the plates!

-- net acceleration = 0!

SO, need a field which can be switched on and off -- an AC system!

Circular Accelerators

- First circular accelerator was the cyclotron
 - Since the entire cyclotron had to be in a magnetic field, the magnets would become very large.
 - Also, as the particles continued to accelerate, their speeds would begin to approach c, and thus they would not keep in step with the changing voltage.
- "Synchrocyclotrons" were invented to try to take these effects into account, as well as other types of accelerators -- betatron, microtron, ...
- But the one that won out, when it came to very high energy particle beams, was the *synchrotron*.

The Synchrotron

- Use a single device which develops an electric field along the direction of motion, and which oscillates at a tunable frequency.
- Use a series of tunable electromagnets whose strength is adjusted to keep the particle(s) on a circular orbit back to the accelerating device (cavity).

Voltage =
$$V \sin(2\pi f t + \delta)$$

$$f = 1/T = v / 2\pi R$$

Each revolution, energy changes by amount $\Delta E = e V \sin(\delta)$

 δ is called the *synchronous phase angle*

Synchrotrons at Fermilab

Booster

R = 75 mh = 84

All use 53 MHz systems h = # possible 'bunches' in
the accelerator

R = 1000 mh = 1113

Radio Frequencies, or "RF"

R = 500 mh = 588 **Main Injector**

So much for acceleration, ... what else do we need?

demo...

Accelerator Magnets

• To steer *high energy*, charged particles, we need to use strong magnetic fields -- electro-magnets: 10 - 100 Gauss

A simple electromagnet might look like:

- Accelerator magnet:
 - lots of current and lots of iron!
 - Iron-dominated magnets can obtain field strengths up to ~2 Tesla

Focusing

- So, as particles move around the accelerator, we need to use other electromagnets to steer and focus them
- Arrangement of focusing magnets, acting much like optical lenses, keeps the particle beam contained...

- Smaller magnets are used to fine-tune the beam trajectory, and to perform special orbit manipulations
 - Note: The beam in the Tevatron, for example, is only about 1 mm wide! Its orbit is controlled to a fraction of a mm!
 Yet, the orbit itself is 6.28 km (4 mi) around!

Example: Fermilab Main Injector

Bending Magnets

Focusing Magnets

Superconducting Tevatron Magnet

- Outside is at room temperature; inside is at 4^oK!
- Field is **4.4** Tesla @ ~4,000 A
- Each magnet is ~20 ft long, and weighs about 4 tons
- ~1000 magnets in the Tevatron

How Accelerators are Used at Fermilab

- Collide beam of particles into a stationary target
 - Neutrino experiments, for example
- Collide beams of particles moving in opposite directions:
 - The energy of the collision can be used to produce new particles (mass = energy!)
 - Energy and Momentum must be conserved
 - Einstein: $E^2 = (mc^2)^2 + (pc)^2$
 - Collider: zero momentum before AND after. Thus, ALL energy can be converted into new stuff!

Tevatron Collider

Tevatron Collider

Tevatron Beam Envelopes

Squeeze Play...

Beam Shape through Final Triplets

We change the strengths of quadrupole magnets to focus the beam stronger, thus increasing chance for collisions

Some Numbers...

- For Tevatron operation,
 - $N_{protons} = 300 \times 10^9, \quad N_{antiprotons} = 70 \times 10^9,$
 - $f = 36 \text{ x } (3\text{x}10^5 \text{ km/sec})/6 \text{ km},$
 - $-A = \pi (60 \mu m)^2 = \pi (0.0060 cm)^2$
 - ---> luminosity: $L = 3 \times 10^{32} \text{ cm}^{-2} \text{ sec}^{-1}$
- Cross section of a proton/antiproton collision

$$\sim 6 \times 10^{-26} \text{ cm}^2$$

- So, we get, and wish to detect, about 18×10^6 collisions per second!
 - The Collider detectors must be able to gather, examine, sort, store relevant data at this rate (and they do!)
- Each proton/antiproton has energy of

980 GeV = 980 x
$$10^9$$
 x $(1.6 \times 10^{-19} \text{ J}) = 1.6 \times 10^{-7} \text{ J}$

Source

Detector

• So, *power* delivered in the collision region is only about

$$2 \times 1.6 \times 10^{-7} \text{ J} \times 18 \times 10^{6} / \text{sec} \sim 6 \text{ watt!}$$

Target

Daily Operation

- Put a "store" into the Tevatron, to produce collisions of protons and antiprotons at ~1 TeV/particle
 - lasts for ~18 hr
- Use the Main Injector to...
 - Make more anti-protons
 - $\sim 300 \times 10^9 / hr$
 - Make and send Neutrinos to ...
 - Minnesota
 - on-site detector
 - Send protons to a "fixed target" facility
 - 0.12 TeV protons onto targets

Daily Operation

- Put a "store" into the Tevatron, to produce collisions of protons and antiprotons at ~1 TeV/particle
 - lasts for ~18 hr
- Use the Main Injector to...
 - Make more anti-protons
 - $\sim 300 \times 10^9 / hr$
 - Make and send Neutrinos to ...
 - Minnesota
 - on-site detector
 - Send protons to a "fixed target" facility
 - 0.12 TeV protons onto targets

Cockroft Walton Preaccelerator

Final kinetic energy of the ions is 0.75 MeV, and their speed is $\sim 0.04c$

All starts here!

inside the dome:

Begins with a bottle of hydrogen gas, H_2 , which is combined with Cesium to produce H- ions $(1 p^+ + 2e^-)$

The H- ions are attracted toward the wall, through the column, and thus gain speed/energy

Linac (cont'd)

Downstream end of Linac:

- particle speed approaching 0.7c
- gap spacing not changing much;
 use different cavity structure
- here, field oscillates at 800 MHz
- Total Linac length: 145 m (475 ft)
- Final kinetic energy: 400 MeV

Mid-way, can take particles out and direct toward target; forms neutrons; used for cancer therapy!

Booster Synchrotron

At entrance, electrons are stripped away from the H⁻ ions -- leaving protons!

Protons circle the Booster 20,000 times, and gain 7600 MeV in K.E.

they exit traveling at 99% c! Total process takes **0.033 seconds!**

Magnets

RF accelerating cavities

Main Injector

Particles enter with 8 GeV K.E.; accelerate up to 150 GeV (0.9999c) Many uses...

- Protons to Antiproton Source, to make antimatter
- Antiprotons into the Recycler synchrotron for storage
- Protons and Antiprotons to the Tevatron for collisions
- Proton beam to the Test Beam experimental area
- Proton beam for neutrino oscillation experiment (NuMI/MINOS)

Neutrinos at the Main Injector

Search for neutrino oscillations (mass) Sending neutrinos straight through the

earth to Minnesota!

Antiproton Source -- anti-matter!

- 120 GeV proton beam from MI strikes target, produces LOTS of particles, every 2 seconds or so
- 8 GeV antiprotons 'filtered' out and stored
- Stochastic Cooling system works on the beam, reducing its size and allowing room to grab/store more particles
- After about 10 hours or so, have ~2-3 Trillion antiprotons! Send to the Collider!

Recycler Synchrotron

- Resides in Main Injector tunnel, near ceiling
- More efficient to store antiprotons previously conditioned in the Antiproton Source, and then send to the Tevatron -- provides higher luminosity overall when used this way
 - Can store up to ∼6 Trillion antiprotons
 - Permanent magnets are used -- not electromagnets (since beam is stored at one energy -- 8 GeV)
 - Has been used successfully to set luminosity records in the Tevatron

Permanent Magnet field map

magnet

Pelletron

The Tevatron

- World's Highest Energy particle accelerator -- 0.98 TeV
 - **Still!** Commissioned in 1983
 - Replaced 400 GeV "Main Ring" in the same tunnel (built ~1972)
 - 1st superconducting accelerator
 - Circumference = $2\pi \text{ km (+/- 5 cm!)}$ (~ 4 miles)
 - At 1 TeV, protons, antiprotons
 speed is 99.99996% c!
 - One round trip for a proton takes
 21 μsec (48,000 revolutions/sec)
- Acceleration takes place with 8 RF cavities, total ~20 m.
 Rest of circumference is magnets, bringing particles back to the cavities!

The Tevatron (cont'd)

- Two beams (matter & antimatter!) circulate in opposite directions, only few mm apart, brought into collision at two detector regions
- While collisions only generate a few watts of power, as shown earlier, the stored energy of the proton beam is
 - $36 \times (300 \times 10^9) \times (1000 \times 10^9 \times 1.6 \times 10^{-19}) = 1.7 \text{ MJ}!$
 - 1.7 MJ = kinetic energy of a 6 ton truck moving at 60 mph
 - 1.7 MJ ~ 2 jelly doughnuts
 - If lost in one revolution, instantaneous power: $1.7 \text{ MJ} / 21 \,\mu\text{sec} = 80 \,\text{GW}!$
- Soon, CERN's LHC will take over as world's most powerful accelerator ...

Fermilab Main Control Room

From here, control and monitor properties of all accelerators

around the clock operation, 24/7 all year shut down periods occur, for maintenance

crews of 5-6 Accelerator Operators and Crew Chief

The Future...

Compare hadrons and leptons

- constituent hadron collision energy is about 1/10 of total hadron beam energies (protons made up of quarks!)
- constituent lepton collision energy is all of total lepton beam energies

Great growth in accelerator- based science during past half-century.

Slower in recent years...

- projects have become large
- necessarily international
- using same old technology

However, present projects require many people and offer many opportunities

Current Accelerator R&D

- Large Hadron Collider (LHC)
 - Proton-proton collider, being constructed at CERN (Geneva, Switzerland)
 - 7000 GeV per particle; note: protons contain quarks and gluons
 - − Ready in ~1 year

Current Accelerator R&D

- Large Hadron Collider (LHC)
 - Proton-proton collider, being constructed at CERN (Geneva, Switzerland)
 - 7000 GeV per particle; note: protons contain quarks and gluons
 - Ready in ~1 year

- ("messy" collisions)
- International Linear Collider (ILC) Complimentary Projects

 Larga int
 - Large international community looking into this project
 - Electron-positron collider, 250-500 GeV per particle
 - Lower energy than LHC, but fundamental particle probes! ("cleaner" collisions)
- Muon Collider / Neutrino Factory
 - Use muons, which are point-like, but heavier than electrons
 - Muons decay, generating neutrinos; good for neutrino studies?
- Very Large Hadron Collider
 - More of the same (like LHC), only *VERY* big...
- Plasma acceleration, Wake Field accelerators, ...
- Other???

A balanced plan for the future

- Maintain strong presence at the energy frontier with the LHC, and continue to study / design possible future new collider at Fermilab
- Build up higher intensity beams (more particles) for frontier research at today's Fermilab energies
- Use our strong resources at the cosmic frontier with particle astrophysics and astronomy
- Fermilab plays a leadership role at all three of these forefront research directions.

Fermilab continues to be a world leader in accelerator-based particle physics

Summary

- Controlled experiments to study fundamental high energy particle physics rely on accelerators
- Highest energy accelerator in the world is at Fermilab -- soon to be eclipsed by CERN's LHC ...
 - Still, the center for neutrino physics experiments for some time!
 - Gearing up to perform other "precision" experiments at the energies accessible by our accelerators
- Meanwhile, Fermilab continues to work on future projects which can be funded at reasonable cost to best benefit the High Energy Physics community (and, society!)
 - LHC, International Linear Collider, etc.

References

- D. A. Edwards and M. J. Syphers, An Introduction to the Physics of High Energy Accelerators, John Wiley & Sons (1993)
- S. Y. Lee, *Accelerator Physics*, World Scientific (1999)
- E. J. N. Wilson, An Introduction to Particle Accelerators, Oxford University Press (2001)
- Web sites:
 - Particle Adventure
 - http://particleadventure.org
 - http://www.lbl.gov/Education/ (many other links here)
- Particle Accelerator Schools --
 - USPAS: http://uspas.fnal.gov
 - CERN CAS: http://cas.web.cern.ch
- Conference Proceedings (use *Google!*) ---
 - Particle Accelerator Conference (2007, 2005, 2003, ...)
 - European Particle Accelerator Conference (2008, 2006, ...)

email: syphers@fnal.gov web: http://home.fnal.gov/~syphers/

